Server : Apache/2.4.43 (Win64) OpenSSL/1.1.1g PHP/7.4.6 System : Windows NT USER-PC 6.1 build 7601 (Windows 7 Professional Edition Service Pack 1) AMD64 User : User ( 0) PHP Version : 7.4.6 Disable Function : NONE Directory : C:/xampp/phpMyAdmin/vendor/bacon/bacon-qr-code/src/Common/ |
<?php declare(strict_types = 1); namespace BaconQrCode\Common; use BaconQrCode\Exception\InvalidArgumentException; use BaconQrCode\Exception\RuntimeException; use SplFixedArray; /** * Reed-Solomon codec for 8-bit characters. * * Based on libfec by Phil Karn, KA9Q. */ final class ReedSolomonCodec { /** * Symbol size in bits. * * @var int */ private $symbolSize; /** * Block size in symbols. * * @var int */ private $blockSize; /** * First root of RS code generator polynomial, index form. * * @var int */ private $firstRoot; /** * Primitive element to generate polynomial roots, index form. * * @var int */ private $primitive; /** * Prim-th root of 1, index form. * * @var int */ private $iPrimitive; /** * RS code generator polynomial degree (number of roots). * * @var int */ private $numRoots; /** * Padding bytes at front of shortened block. * * @var int */ private $padding; /** * Log lookup table. * * @var SplFixedArray */ private $alphaTo; /** * Anti-Log lookup table. * * @var SplFixedArray */ private $indexOf; /** * Generator polynomial. * * @var SplFixedArray */ private $generatorPoly; /** * @throws InvalidArgumentException if symbol size ist not between 0 and 8 * @throws InvalidArgumentException if first root is invalid * @throws InvalidArgumentException if num roots is invalid * @throws InvalidArgumentException if padding is invalid * @throws RuntimeException if field generator polynomial is not primitive */ public function __construct( int $symbolSize, int $gfPoly, int $firstRoot, int $primitive, int $numRoots, int $padding ) { if ($symbolSize < 0 || $symbolSize > 8) { throw new InvalidArgumentException('Symbol size must be between 0 and 8'); } if ($firstRoot < 0 || $firstRoot >= (1 << $symbolSize)) { throw new InvalidArgumentException('First root must be between 0 and ' . (1 << $symbolSize)); } if ($numRoots < 0 || $numRoots >= (1 << $symbolSize)) { throw new InvalidArgumentException('Num roots must be between 0 and ' . (1 << $symbolSize)); } if ($padding < 0 || $padding >= ((1 << $symbolSize) - 1 - $numRoots)) { throw new InvalidArgumentException( 'Padding must be between 0 and ' . ((1 << $symbolSize) - 1 - $numRoots) ); } $this->symbolSize = $symbolSize; $this->blockSize = (1 << $symbolSize) - 1; $this->padding = $padding; $this->alphaTo = SplFixedArray::fromArray(array_fill(0, $this->blockSize + 1, 0), false); $this->indexOf = SplFixedArray::fromArray(array_fill(0, $this->blockSize + 1, 0), false); // Generate galous field lookup table $this->indexOf[0] = $this->blockSize; $this->alphaTo[$this->blockSize] = 0; $sr = 1; for ($i = 0; $i < $this->blockSize; ++$i) { $this->indexOf[$sr] = $i; $this->alphaTo[$i] = $sr; $sr <<= 1; if ($sr & (1 << $symbolSize)) { $sr ^= $gfPoly; } $sr &= $this->blockSize; } if (1 !== $sr) { throw new RuntimeException('Field generator polynomial is not primitive'); } // Form RS code generator polynomial from its roots $this->generatorPoly = SplFixedArray::fromArray(array_fill(0, $numRoots + 1, 0), false); $this->firstRoot = $firstRoot; $this->primitive = $primitive; $this->numRoots = $numRoots; // Find prim-th root of 1, used in decoding for ($iPrimitive = 1; ($iPrimitive % $primitive) !== 0; $iPrimitive += $this->blockSize) { } $this->iPrimitive = intdiv($iPrimitive, $primitive); $this->generatorPoly[0] = 1; for ($i = 0, $root = $firstRoot * $primitive; $i < $numRoots; ++$i, $root += $primitive) { $this->generatorPoly[$i + 1] = 1; for ($j = $i; $j > 0; $j--) { if ($this->generatorPoly[$j] !== 0) { $this->generatorPoly[$j] = $this->generatorPoly[$j - 1] ^ $this->alphaTo[ $this->modNn($this->indexOf[$this->generatorPoly[$j]] + $root) ]; } else { $this->generatorPoly[$j] = $this->generatorPoly[$j - 1]; } } $this->generatorPoly[$j] = $this->alphaTo[$this->modNn($this->indexOf[$this->generatorPoly[0]] + $root)]; } // Convert generator poly to index form for quicker encoding for ($i = 0; $i <= $numRoots; ++$i) { $this->generatorPoly[$i] = $this->indexOf[$this->generatorPoly[$i]]; } } /** * Encodes data and writes result back into parity array. */ public function encode(SplFixedArray $data, SplFixedArray $parity) : void { for ($i = 0; $i < $this->numRoots; ++$i) { $parity[$i] = 0; } $iterations = $this->blockSize - $this->numRoots - $this->padding; for ($i = 0; $i < $iterations; ++$i) { $feedback = $this->indexOf[$data[$i] ^ $parity[0]]; if ($feedback !== $this->blockSize) { // Feedback term is non-zero $feedback = $this->modNn($this->blockSize - $this->generatorPoly[$this->numRoots] + $feedback); for ($j = 1; $j < $this->numRoots; ++$j) { $parity[$j] = $parity[$j] ^ $this->alphaTo[ $this->modNn($feedback + $this->generatorPoly[$this->numRoots - $j]) ]; } } for ($j = 0; $j < $this->numRoots - 1; ++$j) { $parity[$j] = $parity[$j + 1]; } if ($feedback !== $this->blockSize) { $parity[$this->numRoots - 1] = $this->alphaTo[$this->modNn($feedback + $this->generatorPoly[0])]; } else { $parity[$this->numRoots - 1] = 0; } } } /** * Decodes received data. */ public function decode(SplFixedArray $data, SplFixedArray $erasures = null) : ?int { // This speeds up the initialization a bit. $numRootsPlusOne = SplFixedArray::fromArray(array_fill(0, $this->numRoots + 1, 0), false); $numRoots = SplFixedArray::fromArray(array_fill(0, $this->numRoots, 0), false); $lambda = clone $numRootsPlusOne; $b = clone $numRootsPlusOne; $t = clone $numRootsPlusOne; $omega = clone $numRootsPlusOne; $root = clone $numRoots; $loc = clone $numRoots; $numErasures = (null !== $erasures ? count($erasures) : 0); // Form the Syndromes; i.e., evaluate data(x) at roots of g(x) $syndromes = SplFixedArray::fromArray(array_fill(0, $this->numRoots, $data[0]), false); for ($i = 1; $i < $this->blockSize - $this->padding; ++$i) { for ($j = 0; $j < $this->numRoots; ++$j) { if ($syndromes[$j] === 0) { $syndromes[$j] = $data[$i]; } else { $syndromes[$j] = $data[$i] ^ $this->alphaTo[ $this->modNn($this->indexOf[$syndromes[$j]] + ($this->firstRoot + $j) * $this->primitive) ]; } } } // Convert syndromes to index form, checking for nonzero conditions $syndromeError = 0; for ($i = 0; $i < $this->numRoots; ++$i) { $syndromeError |= $syndromes[$i]; $syndromes[$i] = $this->indexOf[$syndromes[$i]]; } if (! $syndromeError) { // If syndrome is zero, data[] is a codeword and there are no errors to correct, so return data[] // unmodified. return 0; } $lambda[0] = 1; if ($numErasures > 0) { // Init lambda to be the erasure locator polynomial $lambda[1] = $this->alphaTo[$this->modNn($this->primitive * ($this->blockSize - 1 - $erasures[0]))]; for ($i = 1; $i < $numErasures; ++$i) { $u = $this->modNn($this->primitive * ($this->blockSize - 1 - $erasures[$i])); for ($j = $i + 1; $j > 0; --$j) { $tmp = $this->indexOf[$lambda[$j - 1]]; if ($tmp !== $this->blockSize) { $lambda[$j] = $lambda[$j] ^ $this->alphaTo[$this->modNn($u + $tmp)]; } } } } for ($i = 0; $i <= $this->numRoots; ++$i) { $b[$i] = $this->indexOf[$lambda[$i]]; } // Begin Berlekamp-Massey algorithm to determine error+erasure locator polynomial $r = $numErasures; $el = $numErasures; while (++$r <= $this->numRoots) { // Compute discrepancy at the r-th step in poly form $discrepancyR = 0; for ($i = 0; $i < $r; ++$i) { if ($lambda[$i] !== 0 && $syndromes[$r - $i - 1] !== $this->blockSize) { $discrepancyR ^= $this->alphaTo[ $this->modNn($this->indexOf[$lambda[$i]] + $syndromes[$r - $i - 1]) ]; } } $discrepancyR = $this->indexOf[$discrepancyR]; if ($discrepancyR === $this->blockSize) { $tmp = $b->toArray(); array_unshift($tmp, $this->blockSize); array_pop($tmp); $b = SplFixedArray::fromArray($tmp, false); continue; } $t[0] = $lambda[0]; for ($i = 0; $i < $this->numRoots; ++$i) { if ($b[$i] !== $this->blockSize) { $t[$i + 1] = $lambda[$i + 1] ^ $this->alphaTo[$this->modNn($discrepancyR + $b[$i])]; } else { $t[$i + 1] = $lambda[$i + 1]; } } if (2 * $el <= $r + $numErasures - 1) { $el = $r + $numErasures - $el; for ($i = 0; $i <= $this->numRoots; ++$i) { $b[$i] = ( $lambda[$i] === 0 ? $this->blockSize : $this->modNn($this->indexOf[$lambda[$i]] - $discrepancyR + $this->blockSize) ); } } else { $tmp = $b->toArray(); array_unshift($tmp, $this->blockSize); array_pop($tmp); $b = SplFixedArray::fromArray($tmp, false); } $lambda = clone $t; } // Convert lambda to index form and compute deg(lambda(x)) $degLambda = 0; for ($i = 0; $i <= $this->numRoots; ++$i) { $lambda[$i] = $this->indexOf[$lambda[$i]]; if ($lambda[$i] !== $this->blockSize) { $degLambda = $i; } } // Find roots of the error+erasure locator polynomial by Chien search. $reg = clone $lambda; $reg[0] = 0; $count = 0; $i = 1; for ($k = $this->iPrimitive - 1; $i <= $this->blockSize; ++$i, $k = $this->modNn($k + $this->iPrimitive)) { $q = 1; for ($j = $degLambda; $j > 0; $j--) { if ($reg[$j] !== $this->blockSize) { $reg[$j] = $this->modNn($reg[$j] + $j); $q ^= $this->alphaTo[$reg[$j]]; } } if ($q !== 0) { // Not a root continue; } // Store root (index-form) and error location number $root[$count] = $i; $loc[$count] = $k; if (++$count === $degLambda) { break; } } if ($degLambda !== $count) { // deg(lambda) unequal to number of roots: uncorrectable error detected return null; } // Compute err+eras evaluate poly omega(x) = s(x)*lambda(x) (modulo x**numRoots). In index form. Also find // deg(omega). $degOmega = $degLambda - 1; for ($i = 0; $i <= $degOmega; ++$i) { $tmp = 0; for ($j = $i; $j >= 0; --$j) { if ($syndromes[$i - $j] !== $this->blockSize && $lambda[$j] !== $this->blockSize) { $tmp ^= $this->alphaTo[$this->modNn($syndromes[$i - $j] + $lambda[$j])]; } } $omega[$i] = $this->indexOf[$tmp]; } // Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = inv(X(l))**(firstRoot-1) and // den = lambda_pr(inv(X(l))) all in poly form. for ($j = $count - 1; $j >= 0; --$j) { $num1 = 0; for ($i = $degOmega; $i >= 0; $i--) { if ($omega[$i] !== $this->blockSize) { $num1 ^= $this->alphaTo[$this->modNn($omega[$i] + $i * $root[$j])]; } } $num2 = $this->alphaTo[$this->modNn($root[$j] * ($this->firstRoot - 1) + $this->blockSize)]; $den = 0; // lambda[i+1] for i even is the formal derivativelambda_pr of lambda[i] for ($i = min($degLambda, $this->numRoots - 1) & ~1; $i >= 0; $i -= 2) { if ($lambda[$i + 1] !== $this->blockSize) { $den ^= $this->alphaTo[$this->modNn($lambda[$i + 1] + $i * $root[$j])]; } } // Apply error to data if ($num1 !== 0 && $loc[$j] >= $this->padding) { $data[$loc[$j] - $this->padding] = $data[$loc[$j] - $this->padding] ^ ( $this->alphaTo[ $this->modNn( $this->indexOf[$num1] + $this->indexOf[$num2] + $this->blockSize - $this->indexOf[$den] ) ] ); } } if (null !== $erasures) { if (count($erasures) < $count) { $erasures->setSize($count); } for ($i = 0; $i < $count; $i++) { $erasures[$i] = $loc[$i]; } } return $count; } /** * Computes $x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1, without a slow divide. */ private function modNn(int $x) : int { while ($x >= $this->blockSize) { $x -= $this->blockSize; $x = ($x >> $this->symbolSize) + ($x & $this->blockSize); } return $x; } }